Parameters
| Parameter | Type | Description |
|---|---|---|
vectors | List[Dict[str, Union[int, List[float], bytes, Dict[str, Union[str, int, bool, float]]]]] | A list of dictionaries, where each dictionary has the format {"id": int, "vector": List[float], "item": bytes}. |
vector dictionary has the following fields:
id(int): Unique integer identifier for the vector.vector(List[float]): Embedding vector as a list of floats.item(bytes): Item contents in bytes (optional)
Exceptions
ValueError
ValueError
- Throws if the vector dimensions are incompatible with the index configuration.
- Throws if the index was not created or loaded yet.
RuntimeError
RuntimeError
- Throws if the vectors could not be upserted.
Example Usage
Upsert Secondary Overload: NumPy Array Format
- A 2D array of floats for the vector embeddings.
- A 1D array of integers for the unique IDs.
Parameters
| Parameter | Type | Description |
|---|---|---|
ids | np.ndarray | 1D NumPy array of shape (num_items,) with dtype=int, containing unique integer identifiers for each vector. Length must match vectors. |
vectors | np.ndarray | 2D NumPy array of shape (num_items, vector_dim) with dtype=float, representing vector embeddings. |
Exceptions
ValueError
ValueError
- Throws if the vector dimensions are incompatible with the index configuration.
- Throws if the index was not created or loaded yet.
RuntimeError
RuntimeError
- Throws if the vectors could not be upserted.